
Audit Report
VEEPE
August 2024

Network BASE

Address 0x637a2d329bca4661fa6741d0aa555d742e3798de

Audited by © cyberscope

VEEPE Token Audit 1

Analysis

⬤ Critical ⬤ Medium ⬤ Minor / Informative ⬤ Pass

Severity Code Description Status

⬤ ST Stops Transactions SemiResolved

⬤ OTUT Transfers User's Tokens Passed

⬤ ELFM Exceeds Fees Limit Passed

⬤ MT Mints Tokens Passed

⬤ BT Burns Tokens Passed

⬤ BC Blacklists Addresses Passed

VEEPE Token Audit 2

Diagnostics

⬤ Critical ⬤ Medium ⬤ Minor / Informative

Severity Code Description Status

⬤ CO Code Optimization Unresolved

⬤ HV Hardcoded Values SemiResolved

⬤ IDI Immutable Declaration Improvement Unresolved

⬤ MEE Missing Events Emission SemiResolved

⬤ PLPI Potential Liquidity Provision Inadequacy Unresolved

⬤ RRA Redundant Repeated Approvals Unresolved

⬤ L04 Conformance to Solidity Naming Conventions Unresolved

⬤ L07 Missing Events Arithmetic Unresolved

⬤ L09 Dead Code Elimination Unresolved

⬤ L13 Divide before Multiply Operation Unresolved

⬤ L15 Local Scope Variable Shadowing Unresolved

VEEPE Token Audit 3

Table of Contents
Analysis 1
Diagnostics 2
Table of Contents 3
Risk Classification 5
Review 6

Audit Updates 6
Source Files 6

Findings Breakdown 8
ST - Stops Transactions 9

Description 9
Recommendation 9
Team Update 10

CO - Code Optimization 11
Description 11
Recommendation 12

HV - Hardcoded Values 13
Description 13
Recommendation 13
Team Update 13

IDI - Immutable Declaration Improvement 15
Description 15
Recommendation 15

MEE - Missing Events Emission 16
Description 16
Recommendation 16
Team Update 16

PLPI - Potential Liquidity Provision Inadequacy 17
Description 17
Recommendation 17

RRA - Redundant Repeated Approvals 19
Description 19
Recommendation 19

L04 - Conformance to Solidity Naming Conventions 20
Description 20
Recommendation 20

L07 - Missing Events Arithmetic 21
Description 21
Recommendation 21

L09 - Dead Code Elimination 22

VEEPE Token Audit 4

Description 22
Recommendation 22

L13 - Divide before Multiply Operation 23
Description 23
Recommendation 23

L15 - Local Scope Variable Shadowing 24
Description 24
Recommendation 24

Functions Analysis 25
Inheritance Graph 26
Flow Graph 27
Summary 28
Disclaimer 29
About Cyberscope 30

VEEPE Token Audit 5

Risk Classification
The criticality of findings in Cyberscope’s smart contract audits is determined by evaluating

multiple variables. The two primary variables are:

1. Likelihood of Exploitation: This considers how easily an attack can be executed,

including the economic feasibility for an attacker.

2. Impact of Exploitation: This assesses the potential consequences of an attack,

particularly in terms of the loss of funds or disruption to the contract's functionality.

Based on these variables, findings are categorized into the following severity levels:

1. Critical: Indicates a vulnerability that is both highly likely to be exploited and can

result in significant fund loss or severe disruption. Immediate action is required to

address these issues.

2. Medium: Refers to vulnerabilities that are either less likely to be exploited or would

have a moderate impact if exploited. These issues should be addressed in due

course to ensure overall contract security.

3. Minor: Involves vulnerabilities that are unlikely to be exploited and would have a

minor impact. These findings should still be considered for resolution to maintain

best practices in security.

4. Informative: Points out potential improvements or informational notes that do not

pose an immediate risk. Addressing these can enhance the overall quality and

robustness of the contract.

Severity Likelihood / Impact of Exploitation

⬤ Critical Highly Likely / High Impact

⬤ Medium Less Likely / High Impact or Highly Likely/ Lower Impact

⬤ Minor / Informative Unlikely / Low to no Impact

VEEPE Token Audit 6

Review

Contract Name VEEPETOKEN

Compiler Version v0.8.15+commit.e14f2714

Optimization 200 runs

Testing Deploy https://testnet.bscscan.com/address/0x4f1be254956ca6ab7e7b

ec9207f0b119270ddd46

Explorer https://basescan.org/address/0x637a2d329bca4661fa6741d0aa

555d742e3798de

Address 0x637a2d329bca4661fa6741d0aa555d742e3798de

Network BASE

Symbol VEEPE

Decimals 18

Total Supply 1,000,000,000

Badge Eligibility Yes

Audit Updates

Initial Audit 23 Aug 2024

Corrected Phase 2 08 Aug 2024

Source Files

Filename SHA256

https://testnet.bscscan.com/address/0x4f1be254956ca6ab7e7bec9207f0b119270ddd46
https://testnet.bscscan.com/address/0x4f1be254956ca6ab7e7bec9207f0b119270ddd46
https://basescan.org/address/0x637a2d329bca4661fa6741d0aa555d742e3798de
https://basescan.org/address/0x637a2d329bca4661fa6741d0aa555d742e3798de

VEEPE Token Audit 7

src/VEEPETOKEN.sol ffc1e1e74060a8b3401cc2712e0aa85648d68d0342d11f553a4f455fed2c

a093

VEEPE Token Audit 8

Findings Breakdown

⬤ Critical 1

⬤ Medium 0

⬤ Minor / Informative 11

Severity Unresolved Acknowledged Resolved Other

⬤ Critical 0 0 0 1

⬤ Medium 0 0 0 0

⬤ Minor / Informative 9 0 0 2

VEEPE Token Audit 9

ST - Stops Transactions

Criticality Critical

Location src/VEEPETOKEN.sol#L453,513

Status SemiResolved

Description

The transactions are initially disabled for all users excluding the authorized addresses. The

owner can enable the transactions for all users. Once the transactions are enable the owner

will not be able to disable them again. Additionally, the contract owner can set a relatively

large number as deadBlocks, so the users will be taxed with 90% fees for a relatively long

period.

function enableTrading(uint256 deadBlocks) external onlyOwner {

require(!tradingActive, "Cannot reenable trading");

tradingActive = true;

swapEnabled = true;

tradingActiveBlock = block.number;

blockForPenaltyEnd = tradingActiveBlock + deadBlocks;

emit EnabledTrading();

}

...

if(!tradingActive){

require(_isExcludedFromFees[from] || _isExcludedFromFees[to],

"Trading is not active.");

}

Recommendation

The team should carefully manage the private keys of the owner’s account. We strongly

recommend a powerful security mechanism that will prevent a single user from accessing

the contract admin functions. Some suggestions are:

● Introduce a multi-sign wallet so that many addresses will confirm the action.

● Introduce a governance model where users will vote about the actions.

The team is also adviced to add a limit in the maximum amount of deadBlocks .

VEEPE Token Audit 10

Team Update

The team removed the deadblocks .

VEEPE Token Audit 11

CO - Code Optimization

Criticality Minor / Informative

Location src/VEEPETOKEN.sol#L410,415,557,566,574,634,654

Status Unresolved

Description

There are code segments that could be optimized. A segment may be optimized so that it

becomes a smaller size, consumes less memory, executes more rapidly, or performs fewer

operations. The check for buyTotalFees > 0 and sellTotalFees > 0 is redundant

since buyTotalFees and sellTotalFees cannot be zero.

buyMarketingFee = 10;

buyDevFee = 10;

buyBurnFee = 0;

buyTotalFees = buyMarketingFee + buyDevFee + buyBurnFee;

sellMarketingFee = 10; sellDevFee = 15;

sellBurnFee = 5;

sellTotalFees = sellMarketingFee + sellDevFee + sellBurnFee;

...

if(earlyBuyPenaltyInEffect() && automatedMarketMakerPairs[from] &&

!automatedMarketMakerPairs[to] && buyTotalFees > 0){

...

else if (automatedMarketMakerPairs[to] && sellTotalFees > 0){

...

else if(automatedMarketMakerPairs[from] && buyTotalFees > 0) {

At swapBack() the variable tokensForBurn is zeroed out twice unnecessarily.

VEEPE Token Audit 12

function swapBack() private {

if(tokensForBurn > 0 && balanceOf(address(this)) >=

tokensForBurn) {

_burn(address(this), tokensForBurn);

}

tokensForBurn = 0;

uint256 contractBalance = balanceOf(address(this));

uint256 totalTokensToSwap = tokensForMarketing + tokensForDev;

if(contractBalance == 0 || totalTokensToSwap == 0) {return;}

if(contractBalance > swapTokensAtAmount * 20){

contractBalance = swapTokensAtAmount * 20;

}

bool success;

swapTokensForEth(contractBalance);

uint256 ethBalance = address(this).balance;

uint256 ethForDev = ethBalance * tokensForDev /

totalTokensToSwap;

tokensForMarketing = 0;

tokensForDev = 0;

tokensForBurn = 0;

(success,) = address(devAddress).call{value: ethForDev}("");

(success,) = address(marketingAddress).call{value:

address(this).balance}("");

}

Recommendation

The team is advised to take these segments into consideration and rewrite them so the

runtime will be more performant. That way it will improve the efficiency and performance of

the source code and reduce the cost of executing it.

VEEPE Token Audit 13

HV - Hardcoded Values

Criticality Minor / Informative

Location src/VEEPETOKEN.sol#L400,559,567,575,641

Status SemiResolved

Description

The contract contains several instances where numeric values are directly hardcoded into

the logic instead of being assigned to constant variables with meaningful names.

Hardcoding values can lead to various issues, such as reduced code readability, increased

likelihood of introducing errors during maintenance, and difficulty in managing and updating

values consistently throughout the contract.

uint256 totalSupply = 1 * 1e9 * 1e18;

maxBuyAmount = totalSupply * 1 / 100;

maxSellAmount = totalSupply * 1 / 100;

maxWalletAmount = totalSupply * 2 / 100;

swapTokensAtAmount = totalSupply * 5 / 10000;

...

fees = amount * 90 / 100;

...

fees = amount * sellTotalFees / 1000;

...

fees = amount * buyTotalFees / 1000;

...

if(contractBalance > swapTokensAtAmount * 20){

contractBalance = swapTokensAtAmount * 20;

}

Recommendation

The team is advised to replace hardcoded numeric values with constant variables that have

meaningful names. This will enhance code readability and maintainability, and reduce the

potential for errors during updates.

Team Update

VEEPE Token Audit 14

The team removed the maxBuyAmount , maxSellAmount and maxWalletAmount .

VEEPE Token Audit 15

IDI - Immutable Declaration Improvement

Criticality Minor / Informative

Location src/VEEPETOKEN.sol#L358,364,365,366,367,369,370,371,372

Status Unresolved

Description

The contract declares state variables that their value is initialized once in the constructor

and are not modified afterwards. The immutable is a special declaration for this kind of

state variables that saves gas when it is defined.

lpPair

buyMarketingFee

buyDevFee

buyBurnFee

buyTotalFees

sellMarketingFee

sellDevFee

sellBurnFee

sellTotalFees

Recommendation

By declaring a variable as immutable, the Solidity compiler is able to make certain

optimizations. This can reduce the amount of storage and computation required by the

contract, and make it more gas-efficient.

VEEPE Token Audit 16

MEE - Missing Events Emission

Criticality Minor / Informative

Location src/VEEPETOKEN.sol#L484,669,674

Status SemiResolved

Description

The contract performs actions and state mutations from external methods that do not result

in the emission of events. Emitting events for significant actions is important as it allows

external parties, such as wallets or dApps, to track and monitor the activity on the contract.

Without these events, it may be difficult for external parties to accurately determine the

current state of the contract.

_isExcludedMaxTransactionAmount[updAds] = isEx;

marketingAddress = payable(_marketingAddress);

devAddress = payable(_devAddress);

Recommendation

It is recommended to include events in the code that are triggered each time a significant

action is taking place within the contract. These events should include relevant details such

as the user's address and the nature of the action taken. By doing so, the contract will be

more transparent and easily auditable by external parties. It will also help prevent potential

issues or disputes that may arise in the future.

Team Update

The team removed the excludeFromMaxTransaction function.

VEEPE Token Audit 17

PLPI - Potential Liquidity Provision Inadequacy

Criticality Minor / Informative

Location src/VEEPETOKEN.sol#L651

Status Unresolved

Description

The contract operates under the assumption that liquidity is consistently provided to the

pair between the contract's token and the native currency. However, there is a possibility

that liquidity is provided to a different pair. This inadequacy in liquidity provision in the main

pair could expose the contract to risks. Specifically, during eligible transactions, where the

contract attempts to swap tokens with the main pair, a failure may occur if liquidity has

been added to a pair other than the primary one. Consequently, transactions triggering the

swap functionality will result in a revert.

function swapTokensForEth(uint256 tokenAmount) private {

// generate the uniswap pair path of token -> weth

address[] memory path = new address[](2);

path[0] = address(this);

path[1] = dexRouter.WETH();

_approve(address(this), address(dexRouter), tokenAmount);

// make the swap

dexRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(

tokenAmount,

0, // accept any amount of ETH

path,

address(this),

block.timestamp

);

}

Recommendation

VEEPE Token Audit 18

The team is advised to implement a runtime mechanism to check if the pair has adequate

liquidity provisions. This feature allows the contract to omit token swaps if the pair does not

have adequate liquidity provisions, significantly minimizing the risk of potential failures.

Furthermore, the team could ensure the contract has the capability to switch its active pair

in case liquidity is added to another pair.

Additionally, the contract could be designed to tolerate potential reverts from the swap

functionality, especially when it is a part of the main transfer flow. This can be achieved by

executing the contract's token swaps in a non-reversible manner, thereby ensuring a more

resilient and predictable operation.

VEEPE Token Audit 19

RRA - Redundant Repeated Approvals

Criticality Minor / Informative

Location src/VEEPETOKEN.sol#L614

Status Unresolved

Description

The contract is designed to approve token transfers during the contract's operation by

calling the _approve function before specific operations. This approach results in

additional gas costs since the approval process is repeated for every operation execution,

leading to inefficiencies and increased transaction expenses.

function swapTokensForEth(uint256 tokenAmount) private {

// generate the uniswap pair path of token -> weth

address[] memory path = new address[](2);

path[0] = address(this);

path[1] = dexRouter.WETH();

_approve(address(this), address(dexRouter), tokenAmount);

// make the swap

dexRouter.swapExactTokensForETHSupportingFeeOnTransferTokens(

tokenAmount,

0, // accept any amount of ETH

path,

address(this),

block.timestamp

);

}

Recommendation

Since the approved address is a trusted third-party source, it is recommended to optimize

the contract by approving the maximum amount of tokens once in the initial set of the

variable, rather than before each operation. This change will reduce the overall gas

consumption and improve the efficiency of the contract.

VEEPE Token Audit 20

L04 - Conformance to Solidity Naming Conventions

Criticality Minor / Informative

Location src/VEEPETOKEN.sol#L272,559,564

Status Unresolved

Description

The Solidity style guide is a set of guidelines for writing clean and consistent Solidity code.

Adhering to a style guide can help improve the readability and maintainability of the Solidity

code, making it easier for others to understand and work with.

The followings are a few key points from the Solidity style guide:

1. Use camelCase for function and variable names, with the first letter in lowercase

(e.g., myVariable, updateCounter).

2. Use PascalCase for contract, struct, and enum names, with the first letter in

uppercase (e.g., MyContract, UserStruct, ErrorEnum).

3. Use uppercase for constant variables and enums (e.g., MAX_VALUE,

ERROR_CODE).

4. Use indentation to improve readability and structure.

5. Use spaces between operators and after commas.

6. Use comments to explain the purpose and behavior of the code.

7. Keep lines short (around 120 characters) to improve readability.

unction WETH() external pure returns (address);

ddress _marketingAddress)

ddress _devAddress)

Recommendation

By following the Solidity naming convention guidelines, the codebase increased the

readability, maintainability, and makes it easier to work with.

Find more information on the Solidity documentation

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-convention.

https://docs.soliditylang.org/en/v0.8.17/style-guide.html#naming-conventions

VEEPE Token Audit 21

L07 - Missing Events Arithmetic

Criticality Minor / Informative

Location src/VEEPETOKEN.sol#L411

Status Unresolved

Description

Events are a way to record and log information about changes or actions that occur within a

contract. They are often used to notify external parties or clients about events that have

occurred within the contract, such as the transfer of tokens or the completion of a task.

It's important to carefully design and implement the events in a contract, and to ensure that

all required events are included. It's also a good idea to test the contract to ensure that all

events are being properly triggered and logged.

wapTokensAtAmount = newAmount;

Recommendation

By including all required events in the contract and thoroughly testing the contract's

functionality, the contract ensures that it performs as intended and does not have any

missing events that could cause issues with its arithmetic.

VEEPE Token Audit 22

L09 - Dead Code Elimination

Criticality Minor / Informative

Location src/VEEPETOKEN.sol#L507

Status Unresolved

Description

In Solidity, dead code is code that is written in the contract, but is never executed or

reached during normal contract execution. Dead code can occur for a variety of reasons,

such as:

● Conditional statements that are always false.

● Functions that are never called.

● Unreachable code (e.g., code that follows a return statement).

Dead code can make a contract more difficult to understand and maintain, and can also

increase the size of the contract and the cost of deploying and interacting with it.

unction addLiquidity(uint256 tokenAmount, uint256 ethAmount)

private {

// approve token transfer to cover all possible scenarios

_approve(address(this), address(dexRouter), tokenAmount);

// add the liquidity

dexRouter.addLiquidityETH{value: ethAmount}(

...

0, // slippage is unavoidable

0, // slippage is unavoidable

address(0xdead),

block.timestamp

);

}

Recommendation

To avoid creating dead code, it's important to carefully consider the logic and flow of the

contract and to remove any code that is not needed or that is never executed. This can help

improve the clarity and efficiency of the contract.

VEEPE Token Audit 23

L13 - Divide before Multiply Operation

Criticality Minor / Informative

Location src/VEEPETOKEN.sol#L466,467,468,469,473,474,475,476

Status Unresolved

Description

It is important to be aware of the order of operations when performing arithmetic

calculations. This is especially important when working with large numbers, as the order of

operations can affect the final result of the calculation. Performing divisions before

multiplications may cause loss of prediction.

ees = amount * buyTotalFees / 1000;

okensForMarketing += fees * buyMarketingFee / buyTotalFees;

Recommendation

To avoid this issue, it is recommended to carefully consider the order of operations when

performing arithmetic calculations in Solidity. It's generally a good idea to use parentheses

to specify the order of operations. The basic rule is that the multiplications should be prior

to the divisions.

VEEPE Token Audit 24

L15 - Local Scope Variable Shadowing

Criticality Minor / Informative

Location src/VEEPETOKEN.sol#L361

Status Unresolved

Description

Local scope variable shadowing occurs when a local variable with the same name as a

variable in an outer scope is declared within a function or code block. When this happens,

the local variable "shadows" the outer variable, meaning that it takes precedence over the

outer variable within the scope in which it is declared.

int256 totalSupply = 1 * 1e9 * 1e18;

Recommendation

It's important to be aware of shadowing when working with local variables, as it can lead to

confusion and unintended consequences if not used correctly. It's generally a good idea to

choose unique names for local variables to avoid shadowing outer variables and causing

confusion.

VEEPE Token Audit 25

Functions Analysis

Contract Type Bases

Function Name Visibility Mutability Modifiers

VEEPETOKEN Implementation ERC20,
Ownable

Public️ ✓ ERC20

External️ Payable -️

enableTrading External️ ✓ onlyOwner

updateSwapTokensAtAmount External️ ✓ onlyOwner

setAutomatedMarketMakerPair External️ ✓ onlyOwner

_setAutomatedMarketMakerPair Private ✓

excludeFromFees Public️ ✓ onlyOwner

_transfer Internal ✓

swapTokensForEth Private ✓

addLiquidity Private ✓

swapBack Private ✓

withdrawStuckETH External️ ✓ onlyOwner

setMarketingAddress External️ ✓ onlyOwner

setDevAddress External️ ✓ onlyOwner

forceSwapBack External️ ✓ onlyOwner

VEEPE Token Audit 26

Inheritance Graph

VEEPE Token Audit 27

Flow Graph

VEEPE Token Audit 28

Summary
VEEPE is an interesting project that has a friendly and growing community. This audit

investigates security issues, business logic concerns and potential improvements.

VEEPE Token Audit 29

Disclaimer
The information provided in this report does not constitute investment, financial or trading

advice and you should not treat any of the document's content as such. This report may not

be transmitted, disclosed, referred to or relied upon by any person for any purposes nor

may copies be delivered to any other person other than the Company without Cyberscope’s

prior written consent. This report is not nor should be considered an “endorsement” or

“disapproval” of any particular project or team. This report is not nor should be regarded as

an indication of the economics or value of any “product” or “asset” created by any team or

project that contracts Cyberscope to perform a security assessment. This document does

not provide any warranty or guarantee regarding the absolute bug-free nature of the

technology analyzed, nor do they provide any indication of the technologies proprietors'

business, business model or legal compliance. This report should not be used in any way to

make decisions around investment or involvement with any particular project. This report

represents an extensive assessment process intending to help our customers increase the

quality of their code while reducing the high level of risk presented by cryptographic tokens

and blockchain technology.

Blockchain technology and cryptographic assets present a high level of ongoing risk

Cyberscope’s position is that each company and individual are responsible for their own

due diligence and continuous security Cyberscope’s goal is to help reduce the attack

vectors and the high level of variance associated with utilizing new and consistently

changing technologies and in no way claims any guarantee of security or functionality of the

technology we agree to analyze. The assessment services provided by Cyberscope are

subject to dependencies and are under continuing development. You agree that your

access and/or use including but not limited to any services reports and materials will be at

your sole risk on an as-is where-is and as-available basis Cryptographic tokens are

emergent technologies and carry with them high levels of technical risk and uncertainty. The

assessment reports could include false positives false negatives and other unpredictable

results. The services may access and depend upon multiple layers of third parties.

About Cyberscope
Cyberscope is a blockchain cybersecurity company that was founded with the vision to

make web3.0 a safer place for investors and developers. Since its launch, it has worked

with thousands of projects and is estimated to have secured tens of millions of investors’

funds.

Cyberscope is one of the leading smart contract audit firms in the crypto space and has

built a high-profile network of clients and partners.

The Cyberscope team

cyberscope.io

https://www.cyberscope.io

